# 2021 年池州市普通高中高三教学质量统一监测

# 数学(理科)参考答案

#### 一、选择题

| 题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|----|---|---|---|---|---|---|---|---|---|----|----|----|
| 答案 | В | D | C | A | C | В | D | D | A | В  | A  | В  |

12. 设点M坐标为 (x,y),P点坐标为  $(x_0,y_0)$ ,因为P,M,E共线所以 $\overrightarrow{PE}$ // $\overrightarrow{ME}$ ,

$$得y_0(x-1) = y(x_0-1)$$

因为
$$y_0 = x_0 + 3$$
,得 
$$\begin{cases} x_0 = \frac{y + 3x - 3}{y - x + 1} \\ y_0 = \frac{4y}{y - x + 1} \end{cases}$$
 ①

CD的直线方程为 $(x_0 - 1)(x - 1) + y_0 y = 4$ ②

将①代入②得 $\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\frac{1}{2}$ ,所以M点的轨迹是以 $\left(\frac{1}{2},\frac{1}{2}\right)$ 为圆心,

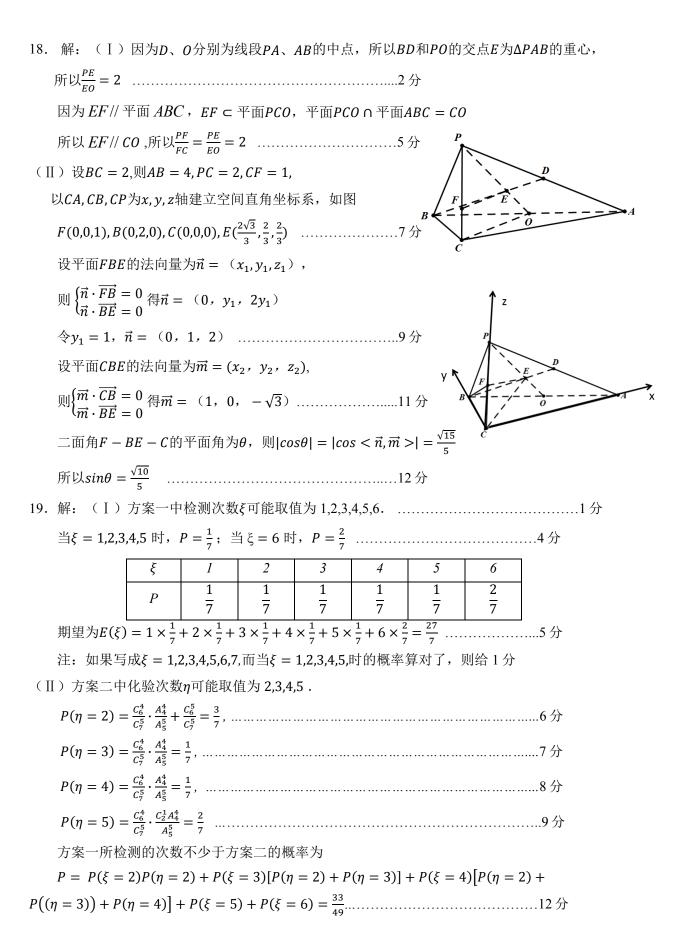
以 $\frac{\sqrt{2}}{2}$ 为半径的圆,所以AM的最大值为 $3\sqrt{2}$ 

注: 本题也可先求 CD 过定点, 然后再求解.

### 二、填空题

- 13. [-6,6] 14. 6 15.  $5\pi$  16.  $-2-2\sqrt{3}$
- 16.  $\{a_n\}$ 是以 $\frac{\pi}{3}$ 为首项,以 $\frac{\pi}{4}$ 为公差的等差数列,所以 $a_n = \frac{\pi}{3} + (n-1)\frac{\pi}{4}$ ,

曲 $\tan(a_{n+1}-a_n)=\frac{\tan a_{n+1}-\tan a_n}{1+\tan a_{n+1}\tan a_n}$ ,可知 $1+\tan a_{n+1}\tan a_n=\tan a_{n+1}-\tan a_n$ 


$$S_{2021} = (tana_2 - tana_1) + (tana_3 - tana_2) + \dots + (tana_{2022} - tana_{2021})$$
$$= tana_{2022} - tana_1 = -2 - 2\sqrt{3}$$

## 三、解答题

因为AD为 $\angle BAC$ 的角平分线,所以 $\angle BAD = \angle DAC = 30^{\circ}$ 

即
$$\frac{1}{2}AB \cdot AC \cdot \sin \angle BAC = \frac{1}{2}AB \cdot AD \cdot \sin \angle BAD + \frac{1}{2}AC \cdot AD \cdot \sin \angle CAD$$
 ......11 分

高三理科数学参考答案 第1页(共4页)



高三理科数学参考答案 第2页(共4页)

| 法二: $P = P(\eta = 2) \left[ 1 - \frac{1}{7} \right] + P(\eta = 3) \left[ 1 - \frac{1}{7} - \frac{1}{7} \right] + P(\eta = 4) \left[ 1 - \frac{1}{7} - \frac{1}{7} - \frac{1}{7} \right] + P(\eta = 4) \left[ 1 - \frac{1}{7} - \frac{1}{7} - \frac{1}{7} \right] + P(\eta = 4) \left[ 1 - \frac{1}{7} - \frac{1}{7} - \frac{1}{7} \right] + P(\eta = 4) \left[ 1 - \frac{1}{7} - \frac{1}{7} - \frac{1}{7} \right] + P(\eta = 4) \left[ 1 - \frac{1}{7} - \frac{1}{7} - \frac{1}{7} \right] + P(\eta = 4) \left[ 1 - \frac{1}{7} - \frac{1}{7} - \frac{1}{7} \right] + P(\eta = 4) \left[ 1 - \frac{1}{7} - \frac{1}{7} - \frac{1}{7} \right] + P(\eta = 4) \left[ 1 - \frac{1}{7} - \frac{1}{7} - \frac{1}{7} - \frac{1}{7} \right] + P(\eta = 4) \left[ 1 - \frac{1}{7} -$ | $-P(\eta=5)$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| $\left[1 - \frac{1}{7} - \frac{1}{7} - \frac{1}{7} - \frac{1}{7}\right] = \frac{33}{49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12分          |
| 20. (I)因为 $e = \frac{\sqrt{3}}{2}$ ,所以 $\frac{c}{a} = \frac{\sqrt{3}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| 又 $ PF_2  = \frac{1}{2}$ ,得 $\frac{b^2}{a} = \frac{1}{2}$ ,解得 $E: \frac{x^2}{4} + y^2 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4分           |
| (II) 设 $l_1$ : $y = kx + 1$ , $l_2$ : $y = \frac{1}{k}x + 1$ , 设点M, N的坐标分别为 $(x_1, y_1)$ , $(x_2, y_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 由 $\begin{cases} y = kx + 1 \\ \frac{x^2}{4} + y^2 = 1 \end{cases}$ 联立得 $(4k^2 + 1)x^2 + 8kx = 0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5分           |
| 解得 $x_1 = \frac{-8k}{4k^2+1}$ , $y_1 = \frac{1-4k^2}{4k^2+1}$ 即 $M(\frac{-8k}{4k^2+1}, \frac{1-4k^2}{4k^2+1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7分           |
| 用 $\frac{1}{k}$ 替代 $M$ 坐标中的 $k$ ,从而得到 $N$ 坐标为( $\frac{-8k}{4+k^2}$ , $\frac{k^2-4}{4+k^2}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8分           |
| 则直线 $MN$ 的斜率为 $k_{MN} = \frac{y_1 - y_2}{x_1 - x_2} = \frac{\frac{1 - 4k^2}{4k^2 + 1} \frac{k^2 - 4}{4 + k^2}}{\frac{-8k}{4k^2 + 1} \frac{-8k}{4 + k^2}} = -\frac{k^2 + 1}{3k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9分           |
| 所以直线 $MN$ 的方程为 $y - \frac{1-4k^2}{4k^2+1} = -\frac{k^2+1}{3k} \left(x - \frac{-8k}{4k^2+1}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| 化简得 $y = -\frac{k^2+1}{3k}x - \frac{5}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10分          |
| 所以直线 $MN$ 恒过定点 $A(0, -\frac{5}{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12分          |
| 21. (I) $\forall x > 0$ , 都有 $f(x) > 0$ ,即 $\forall x > 0$ , 都有 $ae^x - \frac{1}{2}x^2 - x - 1 > 0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| $\mathbb{E} a > \left(\frac{\frac{1}{2}x^2 + x + 1}{e^x}\right)_{max}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 分          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2分           |
| 所以 $h(x)$ 在 $(0, +\infty)$ 上单调递减,则 $h(x) < h(0) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4分           |
| 所以a ≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5分           |
| (II) $x > 0$ 时, $e^{x+1-a}$ 关于 $a$ 单调递减, $\frac{1}{2}ax$ 关于 $a$ 单调递增, $\sqrt{x^2+ax+1}$ 关                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 关于a 单调递增     |
| 因此 $g(x)$ 关于 $a$ 单调递减,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6分           |
| 因为 $0 < a \le 1$ ,所以 $g(x) \ge e^x - \frac{1}{2}x - \sqrt{x^2 + x + 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8分           |
| 由(1)可知 $e^x - \frac{1}{2}x^2 - x - 1 > 0$ ,即 $e^x > \frac{1}{2}x^2 + x + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9分           |
| 所以 $g(x) \ge e^x - \frac{1}{2}x - \sqrt{x^2 + x + 1} > \frac{1}{2}x^2 + x + 1 - \frac{1}{2}x - \sqrt{x^2 + x + 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| $= \frac{1}{2} \left( \sqrt{x^2 + x + 1} \right)^2 - \sqrt{x^2 + x + 1} + \frac{1}{2} = \frac{1}{2} \left( \sqrt{x^2 + x + 1} - 1 \right)^2 >$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0            |
| 因此可知对任意 $x > 0$ , $0 < a \le 1$ , 都有 $g(x) > 0$ 成立                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 分         |

所以m + b = a + 2 + b = 4,即a + b + 1 = 3,

所以f(x)的最小值为a+2,因此m=a+2,

所以3(
$$\frac{1}{a} + \frac{1}{b+1}$$
) = ( $\frac{1}{a} + \frac{1}{b+1}$ )( $a + b + 1$ )
$$= 2 + \frac{b+1}{a} + \frac{a}{b+1} \ge 2 + 2\sqrt{\frac{b+1}{a} \cdot \frac{a}{b+1}} = 4$$
(当且仅当 $a = \frac{3}{2}$ 且 $b = \frac{1}{2}$ 时等号成立).

故
$$\frac{1}{a} + \frac{1}{b+1}$$
的最小值为 $\frac{4}{3}$ . 10分